Discussions
Select Date
Tags:
yash prashar

· started a discussion

· 1 Months ago

dusra step mein hawa bazi hai

Question:
If sec\(\theta\) + tan\(\theta\) = 4, (\(\theta\neq\) 90º), then the value of cos\(\theta\) is – 
Options:
A) 0
B) \(\cfrac{8}{17}\)
C) \(\cfrac{17}{8}\)
D) \(\cfrac{4}{5}\)
Solution:
Ans: (b) Sec\(\theta\) + tan\(\theta\)  = 4 

sec\(\theta\) - tan\(\theta\)  = \(\cfrac{1}{4}\)

2 sec\(\theta\) = 4 + \(\cfrac{1}{4} = \cfrac{17}{4}\)

sec \(\theta\)= \(\cfrac{17}{8}\)

cos\(\theta\) = \(\cfrac{8}{17}\)

Mukul Choudhary

· commented

· 1 Months ago

thank you sir and better you be in hawabazi for others

Ashutosh Acharya

· commented

· 1 Months ago

heavy politics bro

gk

· commented

· 1 Months ago

thanx sir for solution

Knowledge Expert

· commented

· 1 Months ago

Since secΘ + tanΘ= 4

(secΘ + tanΘ )(secΘ- tanΘ)/(secΘ - tanΘ) = 4

(sec^2Θ - tan^2Θ)/(secΘ - tanΘ) = 4

Since sec^2Θ - tan^2Θ = 1

so 1/(secΘ - tanΘ) = 4

so 1/4 = (secΘ - tanΘ)

All Rights Reserved Top Rankers