Discussions
Select Date
Tags:
PALLAVI AZAD

· started a discussion

· 1 Months ago

clear solution

Question:

If a + b + c = 1, then Find max value of  (1+a) (1+b) (1+c)?

Options:
A) 1.47
B) 2.87
C) 55 / 27
D) 2.37
Solution:
Ans: (d) Given,  a + b + c = 1

            

            a = \(\frac{1}{3}\), b = \(\frac{1}{3}\), c = \(\frac{1}{3}\)(for max value)

           a + b + c =1

           \(\frac{1}{3}\) + \(\frac{1}{3}\) + \(\frac{1}{3}\) = 1

           \(\frac{3}{3}\) = 1

            1 = 1

            put the value of a, b, c 

            (1 + a) (1 + b) (1 + c)

            (1 + \(\frac{1}{3}\) ) (1 + \(\frac{1}{3}\) ) (1 + \(\frac{1}{3}\) ) 

             \(\frac{4}{3}\) × \(\frac{4}{3}\) × \(\frac{4}{3}\)

             \(\frac{64}{27}\) = 2.37 

Knowledge Expert

· commented

· 1 Months ago

Dear Student The only thing missing in this solution is the explanation for why the equation.. (a+b)_>2(ab)^(1/2).............................................(2) The reason for this explanation is that we have to compute the value of (1+a)(1+b)(1+c) and thus we can keep one of the variables as 1 And thus for that sole convenience we have taken up this equation (or per se the operating equation as equation (2)) Keep learning with us! Thanks and regards Team TopRankers

All Rights Reserved Top Rankers