Logo Icon

IPMAT Indore 2023 - QA (MCQ) Q18 Explanation

Author : Akash Kumar Singh

December 30, 2024

SHARE

Explanation:

(b)

logn (log2a) = 1

⇒ log2 a = n^1

⇒ a = (2)^n ……………(i)

logn (log2b) = 2

⇒ log2 b= n^2

⇒ b = (2)^n^2 ………….(ii)

logn (log2 c) = 3

⇒ log2 c = n^3

⇒ c = (2)^n^3……………(iii)

We have, 𝑎 = 2^𝑛, 𝑏 = 2^𝑛^2and c = 2^𝑛^3

Now, let us substitute these values of a, b and c in each option and check the equality.

Option (a) a^n + b^n = c^n

LHS = a^n +b^n = (2^𝑛)^𝑛 +(2^𝑛^2)^𝑛 = 2^𝑛^2 + 2%𝑛^3

RHS = 𝑐^𝑛 = (2^𝑛^3)^𝑛 = 2^𝑛^4

We can see LHS ≠ RHS

Option (b) (a^n + b)^n = ac

LHS = (a^n +b)^n = ((2^𝑛)^𝑛 +2^𝑛^2)^𝑛 = (2^𝑛^2 +2^𝑛^2)^𝑛

= (2. 2^𝑛^2)^𝑛 = 2^𝑛(𝑛^2+1)

RHS = ac = 2^𝑛. 2^𝑛^3= 2^𝑛+𝑛^3 = 2^𝑛(1+𝑛^2) = 2^𝑛(𝑛^2+1)

Here LHS = RHS

Thus option (b) is right. We need not to check the other options.